Как найти силу

I. Механика

Тестирование онлайн

Что надо знать о силе

Сила – векторная величина. Необходимо знать точку приложения и направление каждой силы. Важно уметь определить какие именно силы действуют на тело и в каком направлении. Сила обозначается как , измеряется в Ньютонах. Для того, чтобы различать силы, их обозначают следующим образом

Ниже представлены основные силы, действующие в природе. Придумывать не существующие силы при решении задач нельзя!

Сил в природе много. Здесь рассмотрены силы, которые рассматриваются в школьном курсе физики при изучении динамики. А также упомянуты другие силы, которые будут рассмотрены в других разделах.

Сила тяжести

На каждое тело, находящееся на планете, действует гравитация Земли. Сила, с которой Земля притягивает каждое тело, определяется по формуле

Точка приложения находится в центре тяжести тела. Сила тяжести всегда направлена вертикально вниз.

Сила трения

Познакомимся с силой трения. Эта сила возникает при движении тел и соприкосновении двух поверхностей. Возникает сила в результате того, что поверхности, если рассмотреть под микроскопом, не являются гладкими, как кажутся. Определяется сила трения по формуле:

Сила приложена в точке соприкосновения двух поверхностей. Направлена в сторону противоположную движению.

Так как тело представляем в виде материальной точки, силу можно изображать с центра

Сила реакции опоры

Представим очень тяжелый предмет, лежащий на столе. Стол прогибается под тяжестью предмета. Но согласно третьему закону Ньютона стол воздействует на предмет с точно такой же силой, что и предмет на стол. Сила направлена противоположно силе, с которой предмет давит на стол. То есть вверх. Эта сила называется реакцией опоры. Название силы “говорит” реагирует опора. Эта сила возникает всегда, когда есть воздействие на опору. Природа ее возникновения на молекулярном уровне. Предмет как бы деформировал привычное положение и связи молекул (внутри стола), они, в свою очередь, стремятся вернуться в свое первоначальное состояние, “сопротивляются”.

Абсолютно любое тело, даже очень легкое (например,карандаш, лежащий на столе), на микроуровне деформирует опору. Поэтому возникает реакция опоры.

Специальной формулы для нахождения этой силы нет. Обозначают ее буквой , но эта сила просто отдельный вид силы упругости, поэтому она может быть обозначена и как

Сила приложена в точке соприкосновения предмета с опорой. Направлена перпендикулярно опоре.

Так как тело представляем в виде материальной точки, силу можно изображать с центра

Сила упругости

Это сила возникает в результате деформации (изменения первоначального состояния вещества). Например, когда растягиваем пружину, мы увеличиваем расстояние между молекулами материала пружины. Когда сжимаем пружину – уменьшаем. Когда перекручиваем или сдвигаем. Во всех этих примерах возникает сила, которая препятствует деформации – сила упругости.

Сила упругости направлена противоположно деформации.

Так как тело представляем в виде материальной точки, силу можно изображать с центра

При последовательном соединении, например, пружин жесткость рассчитывается по формуле

При параллельном соединении жесткость

Жесткость образца. Модуль Юнга.

Модуль Юнга характеризует упругие свойства вещества. Это постоянная величина, зависящая только от материала, его физического состояния. Характеризует способность материала сопротивляться деформации растяжения или сжатия. Значение модуля Юнга табличное.

Подробнее о свойствах твердых тел здесь.

Вес тела

Вес тела – это сила, с которой предмет воздействует на опору. Вы скажете, так это же сила тяжести! Путаница происходит в следующем: действительно часто вес тела равен силе тяжести, но это силы совершенно разные. Сила тяжести – сила, которая возникает в результате взаимодействия с Землей. Вес – результат взаимодействия с опорой. Сила тяжести приложена в центре тяжести предмета, вес же – сила, которая приложена на опору (не на предмет)!

Формулы определения веса нет. Обозначается эта силы буквой .

Сила реакции опоры или сила упругости возникает в ответ на воздействие предмета на подвес или опору, поэтому вес тела всегда численно одинаков силе упругости, но имеет противоположное направление.

Сила реакции опоры и вес – силы одной природы, согласно 3 закону Ньютона они равны и противоположно направлены. Вес – это сила, которая действует на опору, а не на тело. Сила тяжести действует на тело.

Вес тела может быть не равен силе тяжести. Может быть как больше, так и меньше, а может быть и такое, что вес равен нулю. Это состояние называется невесомостью. Невесомость – состояние, когда предмет не взаимодействует с опорой, например, состояние полета: сила тяжести есть, а вес равен нулю!

Определить направление ускорения возможно, если определить, куда направлена равнодействующая сила

Обратите внимание, вес – сила, измеряется в Ньютонах. Как верно ответить на вопрос: “Сколько ты весишь”? Мы отвечаем 50 кг, называя не вес, а свою массу! В этом примере, наш вес равен силе тяжести, то есть примерно 500Н!

Перегрузка – отношение веса к силе тяжести

Сила Архимеда

Сила возникает в результате взаимодействия тела с жидкость (газом), при его погружении в жидкость (или газ). Эта сила выталкивает тело из воды (газа). Поэтому направлена вертикально вверх (выталкивает). Определяется по формуле:

В воздухе силой Архимеда пренебрегаем.

Если сила Архимеда равна силе тяжести, тело плавает. Если сила Архимеда больше, то оно поднимается на поверхность жидкости, если меньше – тонет.

Электрические силы

Существуют силы электрического происхождения. Возникают при наличии электрического заряда. Эти силы, такие как сила Кулона, сила Ампера, сила Лоренца, подробно рассмотрены в разделе Электричество.

Схематичное обозначение действующих на тело сил

Часто тело моделируют материальной точкой. Поэтому на схемах различные точки приложения переносят в одну точку – в центр, а тело изображают схематично кругом или прямоугольником.

Для того, чтобы верно обозначить силы, необходимо перечислить все тела, с которыми исследуемое тело взаимодействует. Определить, что происходит в результате взаимодействия с каждым: трение, деформация, притяжение или может быть отталкивание. Определить вид силы, верно обозначить направление. Внимание! Количество сил будет совпадать с числом тел, с которыми происходит взаимодействие.

Главное запомнить

1) Силы и их природа;
2) Направление сил;
3) Уметь обозначить действующие силы

Силы трения*

Различают внешнее (сухое) и внутреннее (вязкое) трение. Внешнее трение возникает между соприкасающимися твердыми поверхностями, внутреннее – между слоями жидкости или газа при их относительном движении. Существует три вида внешнего трения: трение покоя, трение скольжения и трение качения.

Трение качения определяется по формуле

Сила сопротивления возникает при движении тела в жидкости или в газе. Величина силы сопротивления зависит от размеров и формы тела, скорости его движения и свойств жидкости или газа. При небольших скоростях движения сила сопротивления пропорциональна скорости тела

При больших скоростях пропорциональна квадрату скорости

Взаимосвязь силы тяжести, закона гравитации и ускорения свободного падения*

Рассмотрим взаимное притяжение предмета и Земли. Между ними, согласно закону гравитации возникает сила

А сейчас сравним закон гравитации и силу тяжести

Величина ускорения свободного падения зависит от массы Земли и ее радиуса! Таким образом, можно высчитать, с каким ускорением будут падать предметы на Луне или на любой другой планете, используя массу и радиус той планеты.

Расстояние от центра Земли до полюсов меньше, чем до экватора. Поэтому и ускорение свободного падения на экваторе немного меньше, чем на полюсах. Вместе с тем, следует отметить, что основной причиной зависимости ускорения свободного падения от широты местности, является факт вращения Земли вокруг своей оси.

При удалении от поверхности Земли сила земного тяготения и ускорения свободного падения изменяются обратно пропорционально квадрату расстояния до центра Земли.

Формула силы

Определение и формула силы

Силой называют векторную величину, которая характеризует взаимодействия тел. Ее модуль определяет «степень» (интенсивность) воздействия. Направление силы совпадает с направлением ускорения, которое приобретает тело при взаимодействии с другими телами.

Силы способны изменять скорости тел и вызывать их деформации. Примером деформированного тела служит сжатая (растянутая) пружина.

Две силы считают равными по модулю и противоположными по направлению, если они приложены к одному телу, но ускорение такого тела равно нулю.

Второй закон Ньютона

Равнодействующая всех сил приложенных к телу (векторная сумма всех сил) () равна производной от импульса тела по времени:

где – импульс тела, m–масса рассматриваемого тела, – скорость. Надо отметить, что уравнение (1) строго применимо только относительно материальной точки. Если рассматривается протяженное тело, то под скоростью понимают скорость движения центра масс тела.

Если масса материальной точки (m)не изменяется во времени, то формула, определяющая результирующую силу, приложенную к ней (второй закон Ньютона) можно представить в виде:

где – ускорение, которое материальная точка приобретает в результате воздействия на нее силы. Выражение (2) показывает то, что если =0, то тело (материальная точка) движется равномерно и прямолинейно или покоится.

Если сила, приложенная к телу, является постоянной (по модулю и направлению), то формулу для нее можно представить в виде:

Единицы измерения силы

Основной единицей измерения момента силы в системе СИ является: [F]=Н=(кг•м)/с 2

Читайте также:  Вредные вещества в продуктах питания

Примеры решения задач

Задание. Уравнения ( и – постоянные коэффициенты) задают движение материальной точки массы m=const. Как изменяется по модулю сила, которая действует на точку?

Решение. В качестве основы для решения задачи используем второй закон Ньютона в виде:

Зная законы изменения координат точки в зависимости от времени определим уравнения изменения составляющих ускорения. Для этого найдем производные по времени от соответствующих координат:

Так как модуль ускорения равен:

то, учитывая выражения (1.2) и (1.3), получаем:

Так как ay=0, то получаем, что сила, которая действует на нашу точку, направлена по оси X, так как направление ускорение и силы совпадают, а мы получили:

где – единичный вектор, направленный по оси X.

Исходя из второго закона Ньютона, имеем:

Ответ. Так как , то с течением времени сила увеличивается по модулю.

Задание. Два параллелепипеда лежат на горизонтальной поверхности. Они соприкасаются. Данные тела могут скользить по поверхности опоры без трения. Масса одного тела равна m1, второго – m2. Первое тело толкнули с силой F. Какова сила давления тел друг на друга (F)?

Решение. Сделаем рисунок.

Рассмотрим, какие силы приложены к первому телув момент толчка, запишем для него второй закон Ньютона:

где – сила тяжести, – реакция опоры, – ускорение тела.

В проекции на ось Xуравнение (2.1) примет вид:

Рассмотрим силы, приложенные к двум параллелепипедам как системе:

В проекции на ось X уравнение (2.3) примет вид:

Из уравнения (2.4) выразим ускорение:

Подставим правую часть выражения (2.5) в (2.2) вместо ускорения:

Ответ.

Как найти силу тока?

Расчет электрических параметров необходим для правильных построений цепей. Поскольку целью использования электричества в электротехнике является задача по выполнению током работы, то встает вопрос о том, как найти силу тока. Данный параметр используют при вычислениях мощности и в расчетах потребления электрической энергии.

Существуют разные способы определения этого важного параметра, которые мы рассмотрим в данной статье.

Формулами

Параметры электрического тока всегда взаимосвязаны. Например, изменение величины нагрузки отображается на показателях других величин. Причем эти изменения подчиняются соответствующим законам, которые выражаются через формулы. Поэтому на практике для нахождения силы тока часто используют соответствующие формулы.

Через заряд и время

Вспомним определение (рис.1): электричество – это величина заряда, движимого силами электрического поля, преодолевающего за единицу времени условную плоскость проводника, называемую поперечным сечением проводника.

Рис. 1. Определение понятия сила тока

Таким образом, если известен электрический заряд, прошедший через проводник за определенное время, то не трудно найти величину этого заряда прошедшего за единицу времени, то есть: I = q/t

Через мощность и напряжение

В паспорте электроприбора обычно указывается его номинальная мощность и параметры электрической сети, для работы с которой он предназначен. Имея в распоряжении эти данные, можно вычислить силу тока по формуле: I = P/U.

Данное выражение вытекает из формулы для расчета мощности: P = IU.

Через напряжение или мощность и сопротивление

Силу электричества на участке цепи определяют по закону Ома. Для этого необходимо знать следующие параметры: сопротивление и напряжение на этом участке. Тогда I = U/R. Если известна мощность нагрузки, то ее можно выразить через квадрат силы тока умноженной на сопротивление участка: P = I 2 R, откуда

Для полной цепи эту величину вычисляют по закону Ома, но с учетом параметров источника питания.

Через ЭДС, внутреннее сопротивление и нагрузку R

Применяя закон Ома, адаптированный для полной цепи, вы можете вычислить максимальный ток по формуле I = ε / (R+r′), если известны параметры:

  • внешнее сопротивление проводников (R);
  • ЭДС источника питания (ε);
  • внутреннее сопротивление источника, обладающего ЭДС (r′).

Примечание! Реальные источники питания обладают внутренним сопротивлением. Поскольку в электрической цепи
показатель силы тока может уменьшаться в связи с возрастанием сопротивления источника питания или в результате падения ЭДС. Именно из-за роста внутреннего сопротивления садится аккумулятор и ослабевает ЭДС элементов питания.

Закон Джоуля-Ленца

Казалось бы, что расчет силы тока по количеству тепла, выделяющегося в результате нагревания проводника, не имеет практического применения. Однако это не так. Рассмотрим это на примере.

Пусть требуется найти силу тока во время работы электрочайника. Для этого доведите до кипения 1 кг воды и засеките время в секундах. Предположим, начальная температура составляла 10 ºС. Тогда Q = Cm(τ – τ) = 4200 Дж/кг× 1 кг (100 – 10) = 378 000 Дж.

Рис. 2. Закон Джоуля-Ленца

Из закона Джоуля-Ленца (изображение на рис. 2) вытекает формула:

Измерив сопротивление электроприбора и подставив значения в формулу, получим величину потребляемого тока.

Измерительными приборами

Если под руками имеются измерительные приборы, то с их помощью довольно просто найти силу тока. Необходимо лишь соблюдать правила измерений и не забывать о правилах безопасности.

Амперметром

Пользуясь приборами для измерения ампеража, следует помнить, что они подключаются в цепи последовательно. Внутреннее сопротивление амперметра очень маленькое, поэтому прибор легко выводится из строя, если проводить измерения пределами значений, для которых он рассчитан.

Схема подключения амперметра показана на рисунке 3. Обратите внимание на то, что на участке измеряемой электрической цепи обязательно должна быть нагрузка.

Рис. 3. Схема подключения амперметра

Большинство аналоговых амперметров, например, таких, как на рисунке 4, предназначены для измерений параметров в цепях с постоянными токами.

Рис. 4. Аналоговый амперметр

Обратите внимание распределение шкалы амперметра. Цена первого деления 50 А, а всех последующих – 10 А. Максимальная величина, которую можно измерить данным амперметром не должна превышать 300 А. Для измерений электрической величины в меньших либо в больших пределах следует применять соответствующие приборы, предназначенные для таких диапазонов. В этом смысле универсальность амперметра ограничена.

При измерениях постоянных токов необходимо соблюдать полярность щупов при подключении амперметра. Для подключения прибора требуется разрывать цепь. Это не всегда удобно. Иногда вычисление силы тока по формуле является предпочтительней, особенно если приходится проводить измерения в сложных электротехнических схемах.

Мультиметром

Преимущество мультиметра в том, что этот прибор многофункциональный. Современные мультиметры цифровые. У них есть режимы для измерений в цепях постоянных и переменных токов. В режиме измерения силы тока этот измерительный прибор подключается в цепь аналогично амперметру.

Перед включением мультиметра в цепь, всегда проверяйте режим измерений, а пределы измерения выбирайте заведомо большие предполагаемой силы тока. После первого измерения можно перейти в режим с меньшим диапазоном.

Для работы с переменным напряжением переводите прибор в соответствующий режим. Считывайте значения с дисплея после того, как цифры перестанут мелькать.

Примеры

Покажем на простых примерах, как решать задачи на вычисление силы тока по формуле.

Задача 1.

На участке цепи имеются три параллельно включенных резистора (см. рис. 5). Значения сопротивлений резисторов: R1 = 5 Ом; R2 = 25 Ом; R3 = 50 Ом. Требуется рассчитать силу тока для каждого резистора и на всём участке, если на нем поддерживается постоянное напряжение 100 В.

Решение: При параллельном соединении нагрузочных элементов U = const, то есть, напряжение одинаково на всех резисторах и составляет 100 В. Тогда, по закону Ома I = U/R

Для вычисления искомого параметра на всем участке цепи, нам необходимо знать общее сопротивление этого участка. Учитывая тот факт, что при параллельном соединении нагрузочных элементов в цепи их общее сопротивление равно:

Имеем: 1/R= 1/5 + 1/25 + 1/50 = 13/50; R = 50/13 ≈ 3.85 (Ом)

Тогда: I = U/R = 100 В/3,85 Ом ≈26 А.

Ответ:

  • Сила тока на сопротивлениях: I1 =20 А; I2 = 4А; I3 = 2 А.
  • Сила тока, поступающего на рассматриваемый участок цепи равна 26 А.

Задача 2.

Мощность электрочайника 2 кВт. Чайник работает от городской сети под напряжением 220 В. Сколько электричества потребляет этот электроприбор?

Решение:

Воспользуемся формулой для нахождения силы тока, включающей напряжение и мощность: I = P/U.

  • 2 кВт преобразим в ватты: 2 кВт = 2000 Вт.
  • Подставляем данные: I = 2 000 Вт/ 220 В ≈ 9 А
  • Ответ: Нагревательный элемент электрочайника рассчитан на 9 А.

Задача 3.

Вычислить силу тока в цепи, если известно, что сопротивление составляет 5 Ом, ЭДС источника питания 6 В, а его внутреннее сопротивление составляет 1 Ом.

Решение.

Применяя закон Ома для полной цепи, запишем: I = ε / (R+r′)

I = 6 В / (5 Ом + 1 Ом) = 1 А.

Ответ: сила тока 1 А.

Задача 4.

Сколько энергии потребляет электроплита за 2 часа работы, если сопротивление нагревательного элемента 40 Ом?

Решение:

За время t электричество выполнит работу A = U*I*t.

Напряжение сети известно – оно составляет 220 В.Силу тока находим по формуле: I = U/R, тогда A = (U 2 /R)*t или

A = ((220 В) 2 / 40 Ом) * 2 ч = 2420 Втч = 2,42 кВтч

Ответ: За 2 часа работы электроплита потребляет 2,42 кВт часов электроэнергии.

Применяя формулы для вычисления параметров электричества, пользуясь фундаментальными законами физики можно находить неизвестные данные для составных элементов цепей и электроприборов с целью оценки их состояния. В каждом отдельном случае необходимо определить известные параметры тока, которые можно использовать в дальнейших вычислениях. Обычно, это напряжение, мощность или сопротивление нагрузки.

Если можно обойтись без измерений амперметром – лучше прибегнуть к вычислениям, даже если при этом потребуется измерить напряжение. Такое измерение можно проводить без разрыва электрической цепи, чего нельзя сделать при помощи амперметра.

Читайте также:  Старение кожи женщины

Физика. Ускорение, масса, сила

Ускорение это изменение скорости в единицу времени.
a = V / t
Ускорение в физике это не основная физическая величина, а производная.
Преобразуем: V = S / t тогда : a = S / t 2
именно это дает запись формулы ускорения в основных величинах и единицу измерения ускорения : метры на секунды в квадрате.

Таким образом: ускорение есть там, где есть линейная скорость движения и эта скорость – меняется в числовом значении.
Но у скорости есть еще направление.
И физики не смогли это дело оставить так, чтобы не запутать и сказали: раз скорость векторная величина, пусть будет так, что ускорение возникает и при изменении направления.
Так ускорение появляется при равномерном круговом движении?
Для нас ясность тут очень важна, так как это траектория движения планет.
Как так, спрашиваем мы, скорость движения постоянна, а появилось ускорение?
Это же нонсенс!

Предлагается:1. чтобы исключить двойное толкование, принять ускорение, как только изменение линейной скорости в единицу времени.
Далее”
2.Основным написанием формулы ускорения считать a = S / t 2,
а написание a = V / t – производным. И еще точнее, чтобы убрать квадратную функцию времени (чего не существует) a = S1- S2 / t. Т.е. ускорение это разница (изменение) пройденного пути в единицу времени. И всё!

3. Считать ускорение не физической, а математической величиной, употребимой в узких пределах.
4. Определение “изменение направления” к ускорению не применять. Считать ускорением только изменение величины, а не направления.

Где мы в формулах встречаем ускорение?
Формула силы. По второму закону Ньютона F = m х a означает, что, если к массе m приложить силу F , то тело будет двигаться с скоростью, которая имеет ускорение а. И чтобы вычислить ускорение, нам надо замерить путь и время, так зачем же оно? Только для облегчения записи вычислений.
Ускорение означает только то, что за одну единицу времени тело будет проходить все более меньший путь.
В случае со свободным падением тела используется понятие ускорение свободного падения тела (без учета сопротивления воздуха) g

И формула пишется F = m х g. Но эта формула справедлива только для случая, когда есть состояние свободного падения. Если тело неподвижно относительно центра Земли, то эта формула не используется, так как приводит к ошибке.
Например. Тело массой m (1 кг.) лежит на весах.
Что показывают весы? Они показывают массу в 1 кг.
А не вес, как силу притяжения ( m х g).
Тело давит на опору весов, с силой притяжения, а по Закону Всемирного тяготения
сила тяжести m х M / R2 ускорения свободного падения не содержит и вес показывают только массу. Таким образом, если задать задачу: арбуз массой m положили на весы и спросили какой вес? А потом перемножить m х g получим неверный результат, потому что весы показывают значение массы, а ускорения g
здесь вообще нет.

Напишите такое уравнение:

m х g = m х M / R2 и получите, после сокращения массы g = M / R2
и эта формула хороша только тем, что объясняет почему ускорение свободного падения не зависит от массы тела , а зависит только от массы Земли и радиуса в квадрате.

Но математически эта формула выглядит как неверная, так как не совпадают единицы измерения.
Наши ученые тут опять отличились. Они ввели гравитационную постоянную и G дали ей единицу измерения м3·с;2·кг;1 (ответ сошелся) а вопрос остался:
Есть от чего сойти с ума : во втором законе ускорение от массы зависит, а при свободном падении – нет!
А происходит это от того, что при увеличении массы силя притяжения растет, а ускорение по второму закону уменьшается и результирующая остается неизменной от массы.

Вообще, вес это еще одна производная от действия гравитации величина, которая в уважающих себя учебниках физики не рассматривается, но очень важна на базаре.

Рассмотрим случай невесомости, когда вес исчезает. Например, парашютист прыгает
с самолета, а парашют дома забыл. (сопротивление воздуха не учитываем, как всегда, зачем ему теперь воздух нужен) Скорость растет с величиной 9.8 метров пройденного пути в секунду!
И здесь появляется еще один парадокс: сила гравитации есть, масса есть, ускорение. тоже есть, а давления на опору (как рыночного понятия веса) нет!

А, если есть сопротивление воздуха?
Тогда: F = m х (g – а)
Здесь а это то реальное ускорение, которое возникает и оно меньше ускорения свободного падения. И, если оно равно g – сила давление опору ( или вес ) равен нулю.

Сила трения – виды, формула и примеры расчета

Сила трения появляется, когда две поверхности соприкасаются и движутся относительно друг друга. Процесс изучает физика, в частности механика. Она рассматривает основные законы, которым поддаются тела при их движении и взаимодействии, выясняет причины, влияющие на изменение положения предметов.

Определение и природа силы трения

Сила трения Fтр возникает при касании двух тел. Она создает препятствия для их дальнейшего движения.

Это происходит при взаимодействии атомов и молекул, из которых состоят предметы. Поэтому природа ее появления – электромагнитные волны. Она действует в двух направлениях, направлена на оба тела.

При этом ее значение по модулю не изменяется. Если на одно из двух соприкасающихся тел действует сила, то она оказывает влияние и на другое.

На предмет, остающийся без движения, влияет сила трения покоя. Пока ее значение не превысит внешнее вмешательство, пытающееся сместить предмет, он не изменит положение.

Когда же ее величина возрастет до определенного предела, произойдет перемещение в новое место. Тогда появляется сила трения скольжения, ее направление противоположно смещению предмета.

Благодаря действию трения невозможно перемещаться вечно. Движение закончится через определенное время. Если же внешняя сила вновь превысит значение трения покоя, то перемещение возобновится.

Виды силы трения

Основные виды силы трения:

Покоя. Она сопротивляется внешним факторам, пытающимся сдвинуть тело. При их отсутствии ее значение приравнивают к нулю.

Скольжения. Она находится в прямой зависимости от коэффициента трения и значения силы, с которой поверхность оказывает давление на тело. Ее направление действия всегда перпендикулярно поверхности. Она обычно ниже, чем максимальная сила трения покоя.

Качения. Она возникает, когда одно тело катится по поверхности другого. Например, при соприкосновении колеса едущего велосипеда с дорогой или при работе подшипникового механизма. Она оказывает гораздо меньшее действие, чем трение скольжения, если остальные условия считать неизменными. Ее открытие стало незаменимым для техники. Колеса и круглые детали, вращающиеся и меняющие положение, являются основой многих механизмов и работы транспортных средств.

Верчения. Она появляется, когда один предмет начинает вращаться по поверхности другого.

Само трение может быть нескольких видов:

Сухим. Проявляется при соприкосновении твердых поверхностей. На них не наблюдаются другие материалы и слои. Такое в природе и жизни встречается крайне редко.

Вязким. Его еще называют жидкостным. Возникает при взаимодействии твердого тела с жидкостью или газом. Они могут течь мимо неподвижного предмета. Или он перемещается в жидкой или газообразной субстанции. Например, лодку тянут на канате по реке. Тело заставляет перемещаться верхний слой жидкости или газа. Словно тянет его за собой. Он в свою очередь действует на другой слой, расположенный ниже. Чем дальше от тела, тем ниже скорость движения слоев. Это происходит из-за уменьшения влияния твердого предмета. Между слоями возникает сила трения, так как тела движутся относительно друг друга. Она приводит к их торможению, а значит и действует на твердое тело, останавливая его. Температура определяет степень вязкости веществ. Например, она снижается при нагревании масла. Это наглядно видно на работе автомобильного мотора. Когда машина долго находилась на холоде, двигатель нужно сначала разогреть, чтобы увеличить скорость его вращения. У газов обратная зависимость. Вязкость растет с увеличением температуры.

Смешанным. Оно наблюдается, когда между телами, соприкасающимися поверхностями, есть слой смазки.

Также трение разделяют на внутреннее и внешнее. Последнее возникает при взаимодействии твердых тел. Значит к нему можно отнести сухое трение.

Внутреннее же характеризуется вязкостью. Именно при взаимодействии жидкостей или газа смещение происходит внутри одного тела, когда слои движутся относительно друг друга.

Как найти силу трения

Чтобы найти силу трения, нужно знать коэффициент трения k, зависящий от свойств поверхности. Это постоянная величина, значение которой берется из таблиц.

Также понадобится сила реакции опоры N. Нужная величина определяется произведением двух значений:

Буквой k обозначается коэффициент. Также можно встретить символ µ. Обычно он находится в пределах от 0,1 до 1.

Например, для резины, перемещающейся по сухому асфальту, при движении он колеблется от 0,5 до 0,8. При скольжении металла по дереву – 0,4, железа по чугуну – 0,18.

Сила реакции опоры не отличается от величины силы тяжести, зависящей от веса тела. Поэтому ее значение равно произведению массы тела (m) на ускорение свободного падения (g).

Это постоянная величина, составляющая 9,8 м/с². Это правило действует, когда приходится иметь дело с горизонтальной поверхностью. Сила тяжести и реакция опоры уравновешивают друг друга. Поэтому их считают равными величинами.

Читайте также:  Как омолодить организм в 30 лет

Если же происходит движение по наклонной плоскости, ход рассуждений несколько меняется. На предмет по-прежнему действуют силы тяжести и реакция опоры, но не в одном направлении.

При знании угла наклона плоскости к горизонту, формула трансформируется и приобретает следующий вид:

Здесь необходимо руководствоваться тем, что косинус это отношение катета, прилежащего к углу, к гипотенузе треугольника. Это один из тех случаев, доказывающих тесную взаимосвязь физики и тригонометрии.

Пример решения задачи

Задача, на применение полученных знаний, связанных с силой трения, поможет закрепить материал.

Условие задачи. На полу стоит коробка весом 7 кг. Коэффициент трения между ней и полом составляет 0,3. К коробке прикладывают силу, равную 14 Н. Сдвинется ли она с места?

Коробка находится на горизонтальной плоскости. Она подвержена действию силы тяжести, которую уравнивает реакция опоры. Они направлены перпендикулярно коробке и полу. Значит, для определения силы реакции опоры, нужно умножить массу коробки на ускорение:

N = 10 кг * 9,8 м/с² = 98 кг * м/с² = 98 Н;

Ответ: полученное значение превышает усилия, приложенные к коробке со стороны, так как 29,4 Н > 14 Н. Значит, она останется на первоначальном месте.

Сила трения присутствует в жизни постоянно. Она мешает предметам сдвинуться с места и противится их длительному скольжению и перемещению. Ее значение зависит от поверхностей, с которыми приходится соприкасаться, их свойств и характеристик.

Площадь соприкосновения не учитывается, зато имеет значение положение тела. Например, сила, возникающая при движении автомобиля по ровной поверхности, отличается от величины при перемещении по горной местности, расположенной под углом к горизонту. А если машине приходится двигаться на мокрой дороге, то значение снова меняется.

Определение силы тока в цепи

Электрическим током в электротехнике называется движение заряженных частиц по какому-либо проводнику. Эта величина не характеризуется лишь количеством энергии электричества, проходящей через проводник, так как за один и тот же проводник можно пропустить ток как разной, так и равной силы за разные промежутки времени. Именно поэтому не все так просто, как кажется. Рекомендуется ознакомиться с более развернутыми определениями электротока, чему он равен и как вычисляется. В этой статье будет объяснено, как найти силу тока в проводнике, будет дана формула этого уравнения.

Сила тока – что это

Рассматривая количество электроэнергии, которое протекает через определенный проводник за различные временные интервалы, станет ясно, что за малый промежуток ток протечет более интенсивно, поэтому нужно ввести еще одно определение. Оно означает силу тока, протекающую в проводнике за секунду времени.

Если сформулировать определение на основе всего вышеперечисленного, то сила электротока – это количество электроэнергии, проходящее через поперечное сечение проводника за секунду. Маркируется величина латинской буквой «I».

Важно! Специалисты определяют силу электротока, равную одному амперу, когда через поперечное сечение проводника проходит один кулон электричества за одну секунду.

Часто в электротехнике можно увидеть другие единицы измерения силы электротока: миллиамперы, микроамперы и так далее. Связано это с тем, что для питания современных схем таких величин будет вполне достаточно. 1 ампер – это очень большое значение, так как человека может убить ток в 100 миллиампер, и потому электророзетка для человека ничуть не менее опасна, чем, к примеру, несущийся на скорости автомобиль.

Если известно количество электроэнергии, которое прошло через проводник за конкретный промежуток времени, то силу (не мощность) можно вычислить по формуле, изображенной на картинке.

Когда электросеть замкнута и не имеет никаких ответвлений, через каждое поперечное сечение за секунду протекает одно и то же количество электричества. Теоретически это обосновывается так: заряд не может накапливаться в определенном месте, и сила электротока везде одинакова.

Источники тока

Источником электротока называется такой электротехнический прибор, который конвертирует определенный вид энергии в электрическую. Такие устройства делятся на физические и химические.

Принцип действия химических источников основан на преобразовании химической энергии в электрическую. Это преобразование происходит самостоятельно и не требует участия извне. В зависимости от возобновляемости элементов и типа реакций, они делятся на:

  • Первичные (батарейки) Первичные источники нельзя использовать второй раз, если они разрядились, так как химические реакции, протекающие в них, необратимы. Они делятся на топливные и полутопливные элементы. Топливные аналогичны батарейкам, но химические вещества в них заправляются отдельно, как продукты химической реакции они выходят наружу. Это помогает им работать долгое время. Полутопливные включают в себя один из химических элементов, а второй постепенно поступает на протяжении всего использования. Их срок службы определяется запасом невозобновляемого вещества. Если для такого элемента возможна регенерация через зарядку, то он возобновляет свои возможности как аккумулятор.

  • Вторичные (аккумуляторы) перед использованием проходят цикл зарядки. Заряд, который они получают в процессе, можно транспортировать вместе с устройствами. После расходования заряда возможна его регенерация за счет зарядки и обратимости химической реакции. Также к вторичным относятся возобновляемые элементы, которые механическим или химическим путем заряжаются и восстанавливают способность питать приборы. Они разработаны таким образом, что после определенного срока требуют замены определенных частей для продолжения реакции.

Важно! Следует понимать, что разделение на батарейки и аккумуляторы условно. Свойства аккумулятора могут проявляться, например, у щелочных батарей, которые можно реанимировать при определенной степени заряда.

Также по типу реагентов химические источники делятся на:

Физические же источники электротока основаны на преобразовании механической, а также ядерной, тепловой или световой энергии в электрическую.

Сила тока – чему равна, в каких единицах она измеряется, как найти силу тока по формуле

Как уже стало понятно, сила электротока – это физическая величина, показывающая заряд, который проходит через проводник за единицу времени. Основная формула для ее вычисления выглядит так: I = q/t, где q – это заряд, который идет по проводнику в кулонах, а t – это временной интервал в секундах.

Рассчитать силу электротока можно и с помощью закона Ома. Он гласит, что эта величина равна напряжению сети в вольтах, деленному на ее сопротивление в омах. В связи с этим имеет место формула такого рода — I = U/R. Этот закон применим для расчета значений постоянного тока.

Чтобы вычислить переменные параметры электричества, нужно разделить найденные величины на квадратный корень из двух.

К сведению! Это более практичный метод измерения, и им приходится пользоваться часто, так как все приборы в доме или в офисе работают от розеток, которые подают переменный ток. Делается это из-за того, что с ним легче работать, его удобнее трансформировать.

Важно! Наглядный пример работы переменного электротока можно наблюдать при включении люминесцентных ламп. Пока они полностью не загорятся, они будут моргать, потому что ток двигается в них то туда, то сюда.

Единицей измерения силы тока является ампер. Он определяется как сила неизменяющегося тока, который проходит по бесконечным параллельным проводникам с наименьшим круговым сечением (с минимальной площадью кругового сечения), отдаленным друг от друга на 1 метр и расположенным в безвоздушном вакуумном пространстве. Это взаимодействие на одном метре длины этих проводников, равное 2 × 10 в минус 7-й степени Ньютона. Если в проводнике за одну секунду времени проходит один кулон заряда, то сила тока в нем равна одному амперу.

Зачем нужно измерять силу тока

Силу тока в проводнике или на участке электрической цепи измеряют для того, чтобы иметь понятие о характеристиках данного проводника или цепи. Так как сила тока – один из основных параметров электричества, он неразрывно связан с другими значениями по типу напряжения и сопротивления. Более того, как уже стало понятно, три этих величины могут пропорционально определять друг друга.

Расчеты силы электротока делаются в разных случаях:

  • При прокладке электрических сетей.
  • При создании приборов.
  • В образовательных целях.
  • При выборе подходящих деталей для совершения тех или иных действий.

Электроприбор для измерения силы тока

Для измерения силы электротока используют специальный прибор под названием амперметр. Если требуется измерить токи самых разных сил, то прибегают к использованию миллиамперметров и макроамперметров. Чтобы измерить им требуемую величину, его подключают в цепь последовательно. Ток, который проходит через устройство, будет изменяться им, и данные будут выведены на цифровой дисплей или аналоговые шкалы.

Важно! Стоит помнить, что включать амперметр можно на любом участке сети, поскольку сила тока в простой замкнутой цепи без ответвлений одинакова во всех точках.

Современные тестеры и мультиметры содержат функцию измерения силы электротока, поэтому нет необходимости прибегать к габаритным приборам, предназначенным для промышленного использования

Таким образом, сила электротока – это основополагающая характеристика движущихся частиц. Она не только дает понять, какое в сети напряжение и сопротивление, но и определяет другие важные величины по типу ЭДС и т. д.


Ссылка на основную публикацию